Boundary RG Flow Associated with the AKNS Soliton Hierarchy
نویسندگان
چکیده
We introduce and study an integrable boundary flow possessing an infinite number of conserving charges which can be thought of as quantum counterparts of the Ablowitz, Kaup, Newell and Segur Hamiltonians. We propose an exact expression for overlap amplitudes of the boundary state with all primary states in terms of solutions of certain ordinary linear differential equation. The boundary flow is terminated at a nontrivial infrared fixed point. We identify a form of whole boundary state corresponding to this fixed point. October 2005
منابع مشابه
AKNS hierarchy and its binary Nonlinearization
A three-by-three matrix spectral problem for AKNS soliton hierarchy is proposed and the corresponding Bargmann symmetry constraint involved in Lax pairs and adjoint Lax pairs is discussed. The resulting nonlinearized Lax systems possess classical Hamiltonian structures, in which the nonlinearized spatial system is intimately related to stationary AKNS flows. These nonlinearized Lax systems also...
متن کاملA Coupled AKNS-Kaup-Newell Soliton Hierarchy
A coupled AKNS-Kaup-Newell hierarchy of systems of soliton equations is proposed in terms of hereditary symmetry operators resulted from Hamiltonian pairs. Zero curvature representations and tri-Hamiltonian structures are established for all coupled AKNS-Kaup-Newell systems in the hierarchy. Therefore all systems have infinitely many commuting symmetries and conservation laws. Two reductions of...
متن کاملDarboux Transformation for the Non-isospectral AKNS Hierarchy and Its Asymptotic Property
In this article, the Darboux transformation for the non-isospectral AKNS hierarchy is constructed. We show that the Darboux transformation for the non-isospectral AKNS hierarchy is not an auto-Bäcklund transformation, because the integral constants of the hierarchy will be changed after the transformation. The transform rule of the integral constants will be also derived. By this means, the sol...
متن کاملA 3 3 Matrix Spectral Problem for Akns Hierarchy and Its Binary Nonlinearization
A three-by-three matrix spectral problem for AKNS soliton hierarchy is proposed and the corresponding Bargmann symmetry constraint involved in Lax pairs and adjoint Lax pairs is discussed. The resulting nonlinearized Lax systems possess classical Hamiltonian structures, in which the nonlinearized spatial system is intimately related to stationary AKNS ows. These nonlin-earized Lax systems also ...
متن کاملDegenerate Four Virtual Soliton Resonance for KP-II
By using disipative version of the second and the third members of AKNS hierarchy, a new method to solve 2+1 dimensional KadomtsevPetviashvili (KP-II) equation is proposed. We show that dissipative solitons (dissipatons) of those members give rise to the real solitons of KP-II. From the Hirota bilinear form of the SL(2,R) AKNS flows, we formulate a new bilinear representation for KP-II, by whic...
متن کامل